小学数学教学资源网 手机版
类目:首页教学文摘

阅读:141  2018-04-30
标签:
最心一位自然数究竟是0还是1——给邱学华教授的一封公开信
邱学华教授:您好!

两年前,当我了解到在全国范围内、在小学的数学教学中、一直存在的《最小的一位数是1》的错误结论出于您的文章时,我及时地通过电子信箱、明明白白地向您论述了《最小的一位数是1》的结论错了,诚诚恳恳地希望您尽快出面纠正错误,可是您一直都做不到。无奈之下,我连续在网上发表了《也谈“最小的一位数”》、《再谈“最小的一位数”》、《三谈“最小的一位数”》和《再见!最小的一位数》,也算管了点儿“闲事”。一晃,两年过去了,一方面,由于您是著名的小学数学教育专家,没有您的一声令下,各地的教委和各所小学都不愿意贸然单独自我修正,而是都在等待着;另一方面,也不知道有没有哪一个行政机关有职责把有关人员(包括我)召集在一起,面对面地讨论出孰是孰非来,致使全国的小学数学老师在教这个问题时依然是那么纠结、孩子们所获得的仍旧是错误的概念。为了孩子们,剩下一个解决问题的方法,我们是否可以尝试在网上公开地在读者面前论一论,这样广大读者也能参与进来。下面我先发言。

一、“最小的一位数”中的“最”字要求我们首先应该界定讨论的范围。我们讨论的范围应该是自然数,您同意吧?这样,把“最小的一位数”改成“最小的一位自然数”就更严密。

二、那么,“最小的一位自然数”究竟是0还是1呢?这是一个非常简单而明确的判断问题,如果没有成年人的误导,小学一年级以上的学生都可能做出正确地判断。

第一层判断:在 《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页中,已经明确规定了自然数包括0。因此,谁都能判断出“0和1都是自然数”;

第二层判断: 因为只有个位的数就是一位数。因此,谁都能判断出“0和1都是一位自然数”;

第三层判断:在自然数中,2,3,4,......,9也都是“一位自然数”。在这十个“一位自然数”中,谁都能判断出“0是最小的一位自然数”、9是最大的一位数;进而,10是最小的两位数、99是最大的两位数;100是最小的三位数、999是最大的三位数;......;以此类推.问题的判断就是这样简单而明确。

三、在两位以上的多位自然数的读写方法上,有个“最高位不可为0”的规定。例如,不可将0写成00;不可将5写成05;不可将100写成0100......等等。也就是说,在一个多位的自然数中,其最高位的取值范围是从1到9,不可取0;而在非最高位的所有位中,取值范围都是从0到9;对于一位自然数来说,不存在最高位(这是语文知识),因此,一位数的取值范围也是从0到9.“最高位不可为0”的规定与“0是最小的一位自然数”的判断没有任何的矛盾,在非最高位中,其取值范围都是从0到9,最小的取值就是0而不是1!因此,您在《最小的一位数是几?》中所得出的《由此可见,按照最高位不为零的规定,0不是一位数,所以最小的一位数绝不是0.我们知道,每位数单位数最小,所以,一位数中最小的数是1.》的结论完完全全地错了!我在《致全国小学数学老师的一封公开信》中已经对此就行了详细地论述。

四、在《最小的一位数究竟是0还是1?》这个“小小的学术问题”上,邱学华教授所犯的错误是明显的,但不具欺骗性;还有两位某两所师范大学的教授,他们在其联合写出的文章中提出了:在自然数范围内最小的一位数是0,在正整数范围内最小的一位数是1. 说白了,就是“最小的一位数可以是0(在自然数范围内),也可以是1(在正整数范围内)。”。这两位教授的说法对不对呢?其前半部分(在自然数范围内最小的一位数是0)当然是对的!而其后部分(在正整数范围内最小的一位数是1)则是似是而非的!是错的!而这个错误具有很强的欺骗性。很多人会认为,正整数中已经不包含0了,那么1不就成了最小的了吗?没错,在正整数集合中,1成了最小的一个数;在2,3,4,......的集合中,2成了最小的一个数;......;在9,10,11,......的集合中,9成了最小的一个数;......;在10000,10001,10002,......;的集合中,10000成了最小的一个数;......谁都有可能成为最小的《一个数》,但它们谁都成不了最小的《一位数》。因为上面所例举的每个集合都是自然数集合的真子集,它们共同的特点是都不再含有《最小的一位数0》.请一定注意!这些自然数集合的真子集中,不再含有《最小的一位数》,而不是《最小的一位数》转移到了《最小的一个数》身上!让我们用反证的方法证明《在正整数范围内最小的一位数是1》是错的:如果最小的一位数是1,则最小的两位数等于最小的十位数(是1,在两位数中,十位是最高位,不可为0)加上最小的个位数(1),等于11,同理可推出:最小的三位数是111,最小的四位数是1111等等,导致错误结果,因此,最小的一位数不是1!无论是在自然数的范围内,还是在正整数的范围内,最小的一位数都不是1!

与该问题有关的各位专家、各位教授、各位老师,以上是我的发言。发言中如果有不对、不当的地方,请各位马上写文章批评、批判。为了孩子们,我愿意引火烧身!作为一名小学生的家长,我真担心这一批一批的孩子在这些基础的概念上继续被误导!如果真的出现了误导孩子、误人子弟的现象,那已不是学术的问题了。

此致 敬礼!

王玉璞  2018/4/28 
标签: 最心一位
把本页分享到:QQ空间新浪微博腾讯微博微信
上一篇:致全国小学数学老师的一封公开信
下一篇:分数乘整数 教学设计(人教版六年级下册)
小学数学教学资源网 教案分类查询
人教版| 新课标| 苏教版| 西师| 北师大| 青岛
1册| 2册| 3册| 4册| 5册| 6册| 7册| 8册| 9册| 10册| 11册| 12册
教案| 学案| 说课| 实录| 案例| 反思
红楼梦神话孔子庄子李白杜甫苏轼东坡李清照赏析唐诗宋词诗歌鲁迅小说散文文学

本站管理员:尹瑞文  QQ:8487054
联系手机:13958889955  电脑版